The Steubenville Comprehensive Air Monitoring Project (SCAMP)

Sponsored by ...

The DOE-NETL Fine Particulate Matter (PM_{2.5}) Research Program

U.S. Department of Energy
Office of Fossil Energy
National Energy Technology
Laboratory

SCAMP - Project Overview

Outdoor (Ambient) Study

- Central monitoring site; four satellite sites
- -Primary performer: CONSOL, Inc.
- Daily sampling of ambient PM_{2.5} for 2-yr period
- -Funding: DOE, EPA

Personal Exposure Study

- Outdoor vs. indoor vs. personal PM_{2.5} in Steubenville
- -Primary Performer: Harvard School of Public Health
- Primary Funding: Ohio Coal Development Office (OCDO)
- -Co-funding: EPRI, NMA, API, AISI, CONSOL

What is $PM_{2.5}$?

- "PM_x"= Airborne particles having a mean aerodynamic diameter of "x" μm or smaller
- Primary: formed and emitted as solid particles
 - soil and rock abrasion; sea salt; pollen and mold spores; fly ash; diesel soot
- <u>Secondary:</u> reaction of gaseous precursors in the atmosphere to form solid particles

$$-2NH_3 + SO_2 + H_2O + \frac{1}{2}O_2 \rightarrow (NH_4)_2SO_4$$

- Major Sources:
 - −PM₁₀ Mechanical generation; primary
 - -PM_{2.5} Combustion; secondary

Regulatory Drivers

- 1997 National Ambient Air Quality Standards (NAAQS) for PM_{2.5}
 - Added to pre-existing standards for PM₁₀
 - Based on adverse health effects
 - -Annual avg. $< 15 \mu g/m^{3}$; Daily max. $< 65 \mu g/m^{3}$
- 1999 Regional Haze Rule
 - PM_{2.5} reduces long-range visibility
 - -Rule targets 156 "Class I" areas (parks, wilderness)
 - All 50 states involved in planning process
 - Goal: "natural" conditions in 60 years
 - Implementation parallels PM_{2.5} NAAQS

Regulatory Timelines

1997 U.S. Primary PM_{2.5} Emissions

Ambient PM_{2.5} Chemical Speciation (Winter 1999)

Urban Site
Pittsburgh, PA
(avg. of 36 samples)

Rural Site Holbrook, PA (avg. of 9 samples)

1998 U.S. Secondary PM_{2.5} Precursor Emissions

Coal Power & PM_{2.5} - Central Issues

- Power plant emissions contribute significantly to <u>secondary</u> PM_{2.5} mass
- Effect of power plant emission reductions on PM_{2.5} mass and regional haze is uncertain
- Effect of power plant emission reductions on human health is even less certain

DOE-NETL PM_{2.5} Program Goals

- Relate emissions from coal-based energy production to concentrations and composition of ambient PM_{2.5}
- Inform decision-makers about energy management options for achieving PM_{2.5} and related air quality standards

PM-Related Research Areas

Program Components

- Ambient Monitoring and Analysis
- Emissions and Plume Characterization
- Modeling and Evaluation
- Emissions Control Technology

Ambient Monitoring and Analysis

DOE-NETL's Major Projects in PA-OH-WV

- Steubenville Comprehensive Air Monitoring Project (SCAMP)
- Upper Ohio River Valley Project (UORVP)
 - Pittsburgh Air Quality Study (CMU/EPA "Supersite")
- NETL In-House Site

SCAMP Outdoor Study

Description and Preliminary Results

SCAMP Outdoor Study - Status

- Sampling May 2000 May 2002
- Ambient data analysis "complete" through Dec. 2000

 Performed by CONSOL Inc.
 - Performed by CONSOL, Inc.
- Not yet integrated with Personal Exposure Study

SCAMP- Ambient Monitoring Sites

- Steubenville, OH (Central Site)
- New Manchester, WV
- Hopedale, OH
- Wheeling, WV
- Latrobe, PA

SCAMP Outdoor Sampling Program

Central site

- Daily filter sampling of PM_{2.5} and PM₁₀ mass
- −1 in 4 chemical analysis of PM_{2.5} filter samples
- Continuous sampling of PM_{2.5} mass (TEOM) and gases (CO, O₃, SO₂, NOx, NMHC, CH₄, NH₃)
- Weather, pollen, mold spores

Satellite sites

- Daily PM_{2.5} mass via filter sampling (FRM)
- –1 in 4 chemical analysis of PM_{2.5} filter samples

SCAMP Central Site

• Franciscan University of Steubenville

Steubenville PM_{2.5} Mass Concentrations Daily Filter (FRM) Data

Steubenville PM_{2.5} Mass vs. Satellites

SCAMP - Average PM_{2.5} Mass (FRM)

		May through August	September through December	May through December
PM _{2.5}	Steubenville	21.5	20.0	20.7
	North (New Martinsville)	16.3	13.6	14.9
	South (Wheeling)	18.5	19.6	18.9
	East (Latrobe)	19.2	14.9	16.9
	West (Hopedale)	15.8	13.2	14.4
PM ₁₀	Steubenville	29.1	26.4	27.7

Average PM_{2.5} Composition Sept.-Dec. 2000

Average Steubenville PM_{2.5} Composition, wt %

Average PM_{2.5} Composition, wt %

	NI	NH ₄ ⁺		SO ₄ ² -		NO ₃ -		CI-		Other (by difference)	
	May- Aug	Sep- Dec	May- Aug	Sep- Dec	May- Aug	Sep- Dec	May- Aug	Sep- Dec	May- Aug	Sep- Dec	
Steubenville	12.0	12.2	35.7	28.6	3.3	8.8	0.9	0.9	48.1	49.5	
North	11.7	11.7	36.4	30.2	2.1	5.9	1.2	0.5	48.6	51.6	
South	13.1	13.7	39.7	37.1	2.7	2.0	0.8	0.4	43.7	46.8	
East	11.9	10.9	35.8	26.5	2.6	7.1	1.0	0.6	48.7	55.0	
West	12.3	12.3	38.1	31.3	2.5	8.2	1.0	0.6	46.1	47.6	
				_		_					

Decrease

Increase

$PM_{2.5}$ mass, $\mu g/m^3$

SCAMP Continuous Samplers (Central Site)

Sept-Dec. 2000

Gases - pink

PM_{2.5} mass (TEOM) - blue

Gas Concentrations vs. PM_{2.5} TEOM Mass

SCAMP Central Site, Sept-Dec. 2000

SO₂ vs. PM_{2.5} Sulfate SCAMP Central Site, Sept-Dec. 2000

PM_{2.5} vs. Weather Conditions

- No significant correlation between PM_{2.5} and surface meteorological parameters (wind speed, direction, humidity, temperature, precip., etc.)
- Need to investigate effects of regional air mass movement
 - Organize data according to common particle trajectories

Summary - SCAMP Outdoor Study

- High day-to-day variability in PM_{2.5} concentrations
- All sites close to or above annual PM_{2.5} standard
- PM_{2.5} variations were consistent across all sites
- Sulfate fraction decreased and nitrate fraction increased from summer to winter 2000
- PM_{2.5} concentration showed some correlation with the ambient air gases (except O₃)
- No strong correlation between PM_{2.5} and weather data
- Pollen and mold spore concentrations were not correlated with PM_{2.5}

SCAMP Personal Exposure Study

Description and Preliminary Results

SCAMP Personal Exposure Study - Background

- Studies have repeatedly shown positive associations between outdoor PM_{2.5} levels and increased mortality and morbidity
 - -Respiratory and cardiovascular problems
- Questions remain regarding:
 - How populations are exposed to air pollution
 - -Components most responsible for health effects

SCAMP Personal Exposure Study - Status

- Completed data collection for panel studies of 2 "susceptible" populations
- Older Adults: Summer 2000; Fall 2000
 - Companion cardiovascular health study (NIEHS)
- Children: Winter 2001; Summer 2001
- Preliminary data analysis for older adult panel
 - -PM_{2.5} mass concentrations

Older Adult Panel Study Locations

Harvard Multi-pollutant Monitor

• 24-hr filter samples

NO₂/SO₂ and O₃ Ogawa badges (passive samplers)

Harvard Outdoor Sampling

Harvard Indoor/Personal Sampling

Personal Exposure/Health Study Participants

	Subjects	Gender	Age	Residence
Summer	30 Health 25 Indoor 10 Personal	28 Female 2 Male	71.6 (55-90)	Kennedy (15) Elmer White (4) Gaylord (5) Off Site (6)
Fall	29 Health 25 Indoor 10 Personal	27 Female 2 Male	70.7 (53-90)	Kennedy (13) Elmer White (5) Gaylord (5) Off Site (6)

- 32 different participants overall
- 27 reported heart/lung conditions
- No current smokers; 15 previous smokers

Personal Exposure/Health Sampling Schedule

PM_{2.5} at Outdoor Sites Harvard Personal Exposure Study

SCAMP Outdoor vs. Indoor PM_{2.5}

Outdoor vs. Personal PM_{2.5}

Indoor vs. Personal PM_{2.5}

Personal Exposure Study - Future Work

- Assess correlation among personal, indoor and outdoor gaseous exposures
- Assess correlation among personal, indoor and outdoor PM_{2.5} composition
- Use mixed regression models to account for:
 - Subject and season effects
 - Home ventilation and other activity factors
- Use exposure measurements in analyses with the cardiovascular health measurements

Acknowledgements

- CONSOL, Inc.
 - -Steve Winter
 - Jeff Withum
- Harvard School of Public Health
 - -Stefanie Ebelt
 - Petros Koutrakis

For Further Information on DOE-NETL PM_{2.5} Research Program

- NETL Environmental & Water Resources Product Line Website:
 - -www.netl.doe.gov/coalpower/environment
- Other Communications tools:
 - 5-year Strategic Plan
 - -Program Fact Sheet
- NETL Conference April 9-10, 2002
 - "PM_{2.5} and Electric Power Generation: Recent Findings and Implications"

